
CT-Unity: Virtual Reality Stream Sharing
Matt Miller, Cycronix, 9/26/2017

CT-Unity: Virtual Reality Stream Sharing

Unity (http://unity3d.com) is a cross-platform 3D game engine that builds 3D immersive games and
Virtual Reality (VR) worlds. Unity is widely used, and claims “more games are made with Unity than
any other game technology”, and “5 Billion downloads of Made with Unity games in Q3 2016” .

Here, we discuss a prototype interface and demonstration of how CloudTurbine (CT) enables real-
world data streaming to the Unity virtual-world environment. Significant applications for this include
“hybrid simulation” and "live, virtual, constructive" (LVC) systems, in which a combination of
measured, analytical, and simulated real-time events are coordinated in a seamless virtual environment.

Figure 1 shows the basic interface between CloudTurbine streaming data sources and CT/Unity
(“CTunity”) in-world displays. The figure shows in-world CT displays floating over the Unity “roll a
ball” tutorial scene. In this example, the “CTstream” and “CTmousetrack” sources record CT data,
which in turn is served via the CTweb application. CTunity display modules make HTTP data requests
from CTweb for associated data. These prototype CTunity displays include:

 CTxyChart - Cross-plot of two streaming channels, e.g. X/Y mouse track

 CTstripChart - Channel vs time scrolling display (multiple color-coded channels)

 CTvideo - Animated image (video) display, e.g. from CTstream/image.jpg

 CTchartOptions - Embedded UI window to adjust chart display options in-world

 SineChart - Self-contained simple sine-wave scrolling stripchart

Figure 1: CloudTurbine to Unity VR Streaming Data Displays

Each of the CTunity display objects in Figure 1 is comprised of simple Unity 3D objects (e.g. cubes),
with one or more custom CT scripts. Unity supports both JavaScript and C#, the latter being utilized
here to interact with CloudTurbine data streams via HTTP calls to the CTweb utility.

http://unity3d.com/

CT-Unity: Virtual Reality Stream Sharing
Matt Miller, Cycronix, 9/26/2017

The upper part of Figure 2 outlines the interaction between the various scripts developed for the
prototype demonstration. In the bottom part of Figure 2, a potential improved future version
implements a master “CTunity.cs” script that controls all or most interaction with CTweb, freeing other
CTunity objects to utilize standard-Unity inter-object communication versus each needing to deal with
CloudTurbine specific protocol.

Figure 2: CTunity Interface Scripts, Prototype and Production Designs

In Figure 3, a sample CTunity script (CTvideo.cs) is shown to illustrate how powerful yet relatively
simple scripting logic provides a live streaming data interface between CloudTurbine and the Unity
environment. Of note, the “url” parameter specifies the link to CTweb for the video channel data. A
runtime loop (“DownloadImage”) makes sequential requests and paints them as a texture on the
CTunity object (a simple 3D cube). Other scripts, not shown here (e.g. CTstripChart), are more
complex in that they interact with the CTchartoptions menu and book-keep a back-to-back sequence of
time-interval requests for gapless streaming data.

Open Source code for this CT-Unity demo are available on Github at:
https://github.com/cycronix/cloudturbine/tree/master/UnityCode.

https://github.com/cycronix/cloudturbine/tree/master/UnityCode

CT-Unity: Virtual Reality Stream Sharing
Matt Miller, Cycronix, 9/26/2017

Figure 3: Example CTunity Script to Fetch and Display Streaming Video

using System;
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

// Simple video display (no options)
// Matt Miller, Cycronix, 7-6-2017

public class CTvideo : MonoBehaviour {
 public string url = "http://localhost:8000/CT/CTstream/webcam.jpg";
 public float pollInterval = 0.1f; // polling interval for new data (sec)
 private Boolean showImage = false;
 private Texture startTexture;

 // Initialization
 void Start () {
 startTexture = GetComponent<Renderer> ().material.GetTexture ("_MainTex");
 StartCoroutine("DownloadImage");
 }

 // Download image updates
 IEnumerator DownloadImage()
 {
 while (true) {
 yield return new WaitForSeconds (pollInterval);

 if (showImage) {
 WWW www = new WWW (url);
 yield return www;

 Texture2D tex = new Texture2D
 (www.texture.width, www.texture.height, TextureFormat.DXT1, false);

 www.LoadImageIntoTexture (tex);
 GetComponent<Renderer> ().material.mainTexture = tex;

 www.Dispose ();
 www = null;
 } else {
 GetComponent<Renderer> ().material.mainTexture = startTexture;
 }
 }
 }

 // toggle show image on mouse click
 public void OnMouseDown() {
 showImage = !showImage; // toggle
 }
}

	CT-Unity: Virtual Reality Stream Sharing

